Simultaneous release of glutamate and acetylcholine from single magnocellular "cholinergic" basal forebrain neurons.
نویسندگان
چکیده
Basal forebrain (BF) neurons provide the principal cholinergic drive to the hippocampus and cortex. Their degeneration is associated with the cognitive defects of Alzheimer's disease. Immunohistochemical studies suggest that some of these neurons contain glutamate, so might also release it. To test this, we made microisland cultures of single BF neurons from 12- to 14-d-old rats. Over 1-8 weeks in culture, neuronal processes made autaptic connections onto the neuron. In 34 of 36 cells tested, a somatically generated action potential was followed by a short-latency EPSC that was blocked by 1 mM kynurenic acid, showing that they released glutamate. To test whether the same neuron also released acetylcholine, we placed a voltage-clamped rat myoball expressing nicotinic receptors in contact with a neurite. In six of six neurons tested, the glutamatergic EPSC was accompanied by a nicotinic (hexamethonium-sensitive) myoball current. Stimulation of the M2-muscarinic presynaptic receptors (characterized using tripitramine and pirenzepine) produced a parallel inhibition of autaptic glutamatergic and myoball nicotinic responses; metabotropic glutamate receptor stimulation produced similar but less consistent and weaker effects. Atropine enhanced the glutamatergic EPSCs during repetitive stimulation by 25 +/- 6%; the anti-cholinesterase neostigmine reduced the train EPSCs by 37 +/- 6%. Hence, synaptically released acetylcholine exerted a negative-feedback inhibition of coreleased glutamate. We conclude that most cholinergic basal forebrain neurons are capable of releasing glutamate as a cotransmitter and that the release of both transmitters is subject to simultaneous feedback inhibition by synaptically released acetylcholine. This has implications for BF neuron function and for the use of cholinesterase inhibitors in Alzheimer's disease.
منابع مشابه
Chronic exposure to nerve growth factor increases acetylcholine and glutamate release from cholinergic neurons of the rat medial septum and diagonal band of Broca via mechanisms mediated by p75NTR.
Basal forebrain neurons play an important role in memory and attention. In addition to cholinergic and GABAergic neurons, glutamatergic neurons and neurons that can corelease acetylcholine and glutamate have recently been described in the basal forebrain. Although it is well known that nerve growth factor (NGF) promotes synaptic function of cholinergic basal forebrain neurons, how NGF affects t...
متن کاملBasal forebrain glutamatergic modulation of cortical acetylcholine release.
The mediation of cortical ACh release by basal forebrain glutamate receptors was studied in awake rats fitted with microdialysis probes in medial prefrontal cortex and ipsilateral basal forebrain. Repeated presentation of a stimulus consisting of exposure to darkness with the opportunity to consume a sweetened cereal resulted in a transient increase in cortical ACh efflux. This stimulated relea...
متن کاملAmphetamine-stimulated cortical acetylcholine release: role of the basal forebrain.
Systemic administration of amphetamine results in increases in the release of acetylcholine in the cortex. Basal forebrain mediation of this effect was examined in three experiments using microdialysis in freely-moving rats. Experiment 1 examined whether dopamine receptor activity within the basal forebrain was necessary for amphetamine-induced increase in cortical acetylcholine by examining wh...
متن کاملOrexin/hypocretin modulation of the basal forebrain cholinergic system: insights from in vivo microdialysis studies.
Since its discovery less than a decade ago, interest in the hypothalamic orexin/hypocretin system has blossomed due to the diversity and importance of the roles played by these neuropeptides. Orexin neurons have widespread projections throughout the central nervous system and intense research has focused on elucidating the pathways and mechanisms by which orexins exert their diverse array of fu...
متن کاملNovel excitatory actions of galanin on rat cholinergic basal forebrain neurons: implications for its role in Alzheimer's disease.
Galanin, a 29-amino-acid neuropeptide, is generally viewed as an inhibitory neuromodulator in a variety of central systems. Galanin expression is upregulated in the cholinergic basal forebrain nuclei in Alzheimer's disease (AD) and is postulated to play an important role in memory and cognitive function. In this study, application of galanin to acutely dissociated rat neurons from the basal for...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- The Journal of neuroscience : the official journal of the Society for Neuroscience
دوره 26 5 شماره
صفحات -
تاریخ انتشار 2006